Quantcast
Channel: iMechanica - vlassak_research_group
Viewing all articles
Browse latest Browse all 8

The effect of film thickness on the failure strain of polymersupported metal films

$
0
0

We perform uniaxial tensile tests on polyimide-supported copper films with a strong (111) fiber texture and with thicknesses varying from 50 nm to 1 μm. Films with thicknesses below 200 nm fail by intergranular fracture at elongations of only a few percent. Thicker films rupture by ductile transgranular fracture and local debonding from the substrate. The failure strain for transgranular fracture exhibits a maximum for film thicknesses around 500 nm. The transgranular failure mechanism is elucidated by performing finite element simulations that incorporate a cohesive zone along the film/substrate interface. As the film thickness increases from 200 nm to 500 nm, a decrease in the yield stress of the film makes it more difficult for the film to debond from the substrate, thus increasing the failure strain. As the thickness increases beyond 500 nm, however, the fraction of (100) grains in the (111)-textured films increases. On deformation, necking and debonding initiate at the (100) grains, leading to a reduction in the failure strain of the films.



Viewing all articles
Browse latest Browse all 8

Latest Images

Trending Articles





Latest Images